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Summary 

( n4-Tropone)Fe(CO)s and ( n4-isoprene)Fe(CO), form separable diastereoisomers 
on substitution of CO by (+)-(neomenthyl)PPh,. In the tropone complex, di- 
astereoisomer interconversion occurs by a 1,3-metal shift. The absolute configura- 
tion of the isoprene complex has been determined crystallographically. 

The use of chiral cyclic and acyclic (n4-diene)Fe(CO), and [( $-dienyl)Fe(CO),]+ 
complexes in asymmetric organic synthesis [l] is hampered by a lack of general 
routes to fully resolved complexes. Reported methods, which are diene- or dienyl- 
centred, limit the range of fully resolved complexes either to substituted [(cyclo- 
hexadienyl)Fe(CO),]+ salts, and their derived (cyclohexadiene)Fe(CO), counter- 
parts [2], or to cyclic or acyclic (diene)Fe(CO), complexes containing diene sub- 
stituents (e.g. COOH, CHO) which are amenable to resolution by classical organic 
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procedures [3]. We wish to report here a potentially general method based on 
metal-bound chiral phosphines, and its application to the resolution of (n4- 
tropone)Fe(CO), (1) and ( n4-isoprene)Fe(CO), (2) complexes which are not 
amenable to resolution using presently available methods. 

Complex 1 may be taken as an example of asymmetry residing in the n4-coordi- 
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Fig. 1. Variable temperature “P NMR spectra of (tropone)Fe(CO),L (L = ( +)-(neomenthyl)PPh2) 
(CD,Cl,); (a) pure diastereoisomer (A) at O’C, (b) equilibrium mixture of diastereoisomers A and B at 

0°C. (c) equilibrium mixture of diastereoisomers at - 62OC. 
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the (-)-(tropone)Fe(CO), isomer, though the absolute configuration is not known. 
Heating to + 30°C yields eventually the spectrum of the equilibrium mixture (Fig. 
2), with the intersections representing isodichroic points. 

Though the rate of the 1.3-shift precludes asymmetric syntheses using the pure 
diastereoisomer at temperatures much higher than + 10°C, we have found that 
cycloaddition reactions using, for example, tetracyanoethylene [lo] are sufficiently 
rapid at 0°C and below to provide diastereoisomerically pure adducts. We are also 
investigatinig the influence of other chiral ligands on the equilibrium diastereoi- 
someric ratio. 

Chiralty in 2 is derived from asymmetric alkyl substitution of the acyclic diene. 
Substitution using ( +)-(neomenthyl)PPh, yields 4 as an equimolar mixture of two 
diastereoisomers (S(31P) 72.5, 73.6 ppm) from which the isomer of higher chemical 
shift may be isolated by fractional crystallization [6]. This complex is also fluxional, 
exhibiting two resonances of approximately equal intensity at - 70” C which may be 
assigned to axial and basal isomers of a square pyramidal geometry [II]. In contrast 
to 3 however, there is no evidence for diastereoisomer interconversion at tempera- 
tures up to + 100°C. In this case, the absolute configuration has been determined 

H(33) 

Fig. 3. Structure of complex 4. Diene hydrogens and C(2)-C(6) of phenyl rings omitted for clarity. 
Important bond lengths (A): Fe(l)-P(1) 2.230(3); Fe(l)-C(6),C(7) 1.719(17), 1.777(17); Fe(l)-C(l),C(4) 
2.068(16), 2.082(15); Fe(l)-C(2),C(3) 2.063(13), 2.058(15); C(l)-C(2), C(3)-C(4) 1.442(18), 1.492(19); 
C(2)-C(3) 1.35607). Important bond angles (“): P(l)-Fe(l)-C(6).C(7) 103.0(4), 99.2(4); 
P(l)-Fe(l)-C(l),C(4) 91.6(4), 94.9(4): C(l)-Fe(l)-C(4) 79.6(5), C(2)-Fe(l)-C(3) 38,4(j); 
C(6)-Fe(l)-C(7) 91.5(8). 
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crystallographically (Fig. 3) *. The overall geometry may be described as a distorted 
square pyramid with phosphine in the axial position. The known configuration of 
the neomenthyl group (lS, 2S, 5R) establishes the configuration of the (isoprene)Fe 
moiety as (2R) according to the Birch convention for nomenclature [18]. 

It has been shown that in reactions which generate chiral quaternary carbon 
centres (for example, cycloaddition (see above), electrophilic substitution [19], and 
nucleophilic addition [20]), (diene)- and [(dienyl)-Fe(CO),PR,]+ complexes exhibit 
similar or superior reactivity relative to the tricarbonyl analogue. Thus, pure 
diastereoisomers of this type should provide access to enantiomerically pure organic 
products without the need for regeneration of the tricarbonyl enantiomer. 

We thank the SERC and the University of Keele for support. 
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